Numerical and experimental investigation on dynamic thermal performance of floor heating system with phase change material for thermal storage

Author:

Zhang Qunli12,Yang Zhaosheng1ORCID,Wang Gang1

Affiliation:

1. Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China

2. Beijing Advanced Innovation Centre for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing, China

Abstract

The floor heating system with phase change materials (PCMs) for thermal storage is an effective approach to increase the floor thermal capacity and reduce indoor temperature fluctuation range. A two-dimensional numerical model of the floor heating system combined with PCM was developed to investigate its dynamic thermal performance in winter. To verify the reliability of the model, an experimental room was established in Beijing, China. The experiment results agreed well with the modelling results, which demonstrated that the numerical model was reliable. The effects of the phase change temperature, latent heat and thermal conductivity of PCM on the thermal performance of the floor were numerically investigated. The results showed that the phase change temperature and thermal conductivity of PCM had a significant influence on thermal comfort. At the same time, these two thermal physical parameters also played a critical role in improving the utilization rate of PCM. Conversely, the latent heat, in the range of 100 to 200 kJ/kg, had no obvious influence on the thermal performance of the floor. PCM with phase change temperature of 313 K was recommended, which could increase the average indoor temperature by 2.2 K, increase the thermal energy storage ratio by 12% and reduce indoor temperature fluctuation range by 2.2 K.

Funder

“the 13th Five-Year” National Science and Technology Major Project of China

Fundamental Research Funds for Beijing Universities

BUCEA Post Graduate Innovation Project

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3