Pulmonary Neuroendocrine Cell Hyperplasia in Hemoglobin Bart-induced Hydrops Fetalis

Author:

Taweevisit Mana1,Theerasantipong Boochit1,Taothong Kanlaya1,Thorner Paul Scott12

Affiliation:

1. Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand

2. Department of Pathology and Laboratory Medicine, Hospital for Sick Children and University of Toronto, Toronto, Canada

Abstract

The pulmonary neuroendocrine system includes pulmonary neuroendocrine cells (PNECs) and neuroepithelial bodies (NEBs) that are distributed throughout respiratory epithelium and regulate lung growth and maturation antenatally. Abnormalities in this system have been linked to many hypoxia-associated pediatric pulmonary disorders. Hemoglobin (Hb) Bart disease is a severe form of α-thalassemia resulting in marked intrauterine hypoxia with hydrops fetalis (HF) and usually death in utero. Affected fetuses can serve as a naturally occurring human model for the effects of intrauterine hypoxia, and we postulated that these effects should include changes in the pulmonary neuroendocrine system. Bombesin immunostaining was used to assess PNECs and NEBs in stillborn fetuses with Hb Bart HF ( n = 16) and with HF from other causes ( n = 14) in comparison to non-HF controls. Hb Bart HF showed a significant increase in the proportion of PNECs in respiratory epithelium ( P = .002), mean number of NEB nuclei ( P = .03), and mean size of NEBs ( P = .002), compared to normal non-HF controls. Significant differences were not observed between HF due to other causes and non-HF controls with normal lungs. Non-HF controls with pulmonary hypoplasia showed significant increases in PNECs compared to HF cases not due to Hb Bart HF, implying HF alone does not cause such increases. In contrast, no significant differences were noted between non-HF controls with pulmonary hypoplasia and Hb Bart cases. Hb Bart HF may provide a useful model for studying the pulmonary neuroendocrine system under chronic intrauterine hypoxia.

Publisher

SAGE Publications

Subject

General Medicine,Pathology and Forensic Medicine,Pediatrics, Perinatology and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perinatal Hypoxemia and Oxygen Sensing;Comprehensive Physiology;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3