Performance of Coefficient Alpha and Its Alternatives: Effects of Different Types of Non-Normality

Author:

Xiao Leifeng1ORCID,Hau Kit-Tai1

Affiliation:

1. The Chinese University of Hong Kong, Hong Kong SAR, P.R. China

Abstract

We examined the performance of coefficient alpha and its potential competitors (ordinal alpha, omega total, Revelle’s omega total [omega RT], omega hierarchical [omega h], greatest lower bound [GLB], and coefficient H) with continuous and discrete data having different types of non-normality. Results showed the estimation bias was acceptable for continuous data with varying degrees of non-normality when the scales were strong (high loadings). This bias, however, became quite large with moderate strength scales and increased with increasing non-normality. For Likert-type scales, other than omega h, most indices were acceptable with non-normal data having at least four points, and more points were better. For different exponential distributed data, omega RT and GLB were robust, whereas the bias of other indices for binomial-beta distribution was generally large. An examination of an authentic large-scale international survey suggested that its items were at worst moderately non-normal; hence, non-normality was not a big concern. We recommend (a) the demand for continuous and normally distributed data for alpha may not be necessary for less severely non-normal data; (b) for severely non-normal data, we should have at least four scale points, and more points are better; and (c) there is no single golden standard for all data types, other issues such as scale loading, model structure, or scale length are also important.

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3