Affiliation:
1. The University of British Columbia, Vancouver, British Columbia, Canada
Abstract
Within the context of moderated multiple regression, mean centering is recommended both to simplify the interpretation of the coefficients and to reduce the problem of multicollinearity. For almost 30 years, theoreticians and applied researchers have advocated for centering as an effective way to reduce the correlation between variables and thus produce more stable estimates of regression coefficients. By reviewing the theory on which this recommendation is based, this article presents three new findings. First, that the original assumption of expectation-independence among predictors on which this recommendation is based can be expanded to encompass many other joint distributions. Second, that for many jointly distributed random variables, even some that enjoy considerable symmetry, the correlation between the centered main effects and their respective interaction can increase when compared with the correlation of the uncentered effects. Third, that the higher order moments of the joint distribution play as much of a role as lower order moments such that the symmetry of lower dimensional marginals is a necessary but not sufficient condition for a decrease in correlation between centered main effects and their interaction. Theoretical and simulation results are presented to help conceptualize the issues.
Subject
Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献