Affiliation:
1. Indiana University-Purdue University at Indianapolis
2. Tulane University
Abstract
Researchers have typically employed parametric analysis of raw data to test experimental data for statistical significance. When the data are not normally distributed, data transformation or nonparametric analysis are often recommended. The present study compares parametric analysis of raw data to parametric analysis of transformed data and to nonparametric analysis when the tests are carried out under population nonnormality. The results of a Monte Carlo simulation indicate that when distributions depart markedly from normality, nonparametric analysis and parametric analysis of transformed data show superior power to parametric analysis of raw data. Furthermore, under the conditions studied, parametric analysis of transformed data appears to be somewhat more powerful than nonparametric analysis.
Subject
Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献