Affiliation:
1. National University of Tainan, Tainan, Taiwan
2. University of Illinois at Urbana-Champaign, Champaign, IL, USA
Abstract
For item selection in cognitive diagnostic computerized adaptive testing (CD-CAT), ideally, a single item selection index should be created to simultaneously regulate precision, exposure status, and attribute balancing. For this purpose, in this study, we first proposed an attribute-balanced item selection criterion, namely, the standardized weighted deviation global discrimination index (SWDGDI), and subsequently formulated the constrained progressive index (CP_SWDGDI) by casting the SWDGDI in a progressive algorithm. A simulation study revealed that the SWDGDI method was effective in balancing attribute coverage and the CP_SWDGDI method was able to simultaneously balance attribute coverage and item pool usage while maintaining acceptable estimation precision. This research also demonstrates the advantage of a relatively low number of attributes in CD-CAT applications.
Subject
Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献