Efficient Standard Errors in Item Response Theory Models for Short Tests

Author:

Ippel Lianne1ORCID,Magis David2

Affiliation:

1. Maastricht University, Maastricht, the Netherlands

2. University of Liège, Liege, Belgium

Abstract

In dichotomous item response theory (IRT) framework, the asymptotic standard error (ASE) is the most common statistic to evaluate the precision of various ability estimators. Easy-to-use ASE formulas are readily available; however, the accuracy of some of these formulas was recently questioned and new ASE formulas were derived from a general asymptotic theory framework. Furthermore, exact standard errors were suggested to better evaluate the precision of ability estimators, especially with short tests for which the asymptotic framework is invalid. Unfortunately, the accuracy of exact standard errors was assessed so far only in a very limiting setting. The purpose of this article is to perform a global comparison of exact versus (classical and new formulations of) asymptotic standard errors, for a wide range of usual IRT ability estimators, IRT models, and with short tests. Results indicate that exact standard errors globally outperform the ASE versions in terms of reduced bias and root mean square error, while the new ASE formulas are also globally less biased than their classical counterparts. Further discussion about the usefulness and practical computation of exact standard errors are outlined.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3