Affiliation:
1. Maastricht University, Maastricht, the Netherlands
2. University of Liège, Liege, Belgium
Abstract
In dichotomous item response theory (IRT) framework, the asymptotic standard error (ASE) is the most common statistic to evaluate the precision of various ability estimators. Easy-to-use ASE formulas are readily available; however, the accuracy of some of these formulas was recently questioned and new ASE formulas were derived from a general asymptotic theory framework. Furthermore, exact standard errors were suggested to better evaluate the precision of ability estimators, especially with short tests for which the asymptotic framework is invalid. Unfortunately, the accuracy of exact standard errors was assessed so far only in a very limiting setting. The purpose of this article is to perform a global comparison of exact versus (classical and new formulations of) asymptotic standard errors, for a wide range of usual IRT ability estimators, IRT models, and with short tests. Results indicate that exact standard errors globally outperform the ASE versions in terms of reduced bias and root mean square error, while the new ASE formulas are also globally less biased than their classical counterparts. Further discussion about the usefulness and practical computation of exact standard errors are outlined.
Funder
Fonds De La Recherche Scientifique - FNRS
Subject
Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献