Affiliation:
1. University of South Florida
Abstract
This research is an investigation of the effects of nonrandomly missing data in two-predictor regression analyses and the differences in the effectiveness of five common treatments of missing data on estimates of R2 and of each of the two standardized regression weights. Bootstrap samples of 50, 100, and 200 were drawn from three sets of actual field data. Nonrandomly missing data were created within each sample, and the parameter estimates were compared with those obtained from the same samples with no missing data. The results indicated that three imputation procedures (mean substitution, simple and multiple regression imputation) produced biased estimates of R2 and both regression weights. Two deletion procedures (listwise and pairwise) provided accurate parameter estimates with up to 30% of the data missing.
Subject
Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献