Affiliation:
1. McGill University, Montreal, Quebec, Canada
2. National Chengchi University, Taipei, Taiwan
Abstract
A multilevel latent class model (MLCM) is a useful tool for analyzing data arising from hierarchically nested structures. One important issue for MLCMs is determining the minimum sample sizes needed to obtain reliable and unbiased results. In this simulation study, the sample sizes required for MLCMs were investigated under various conditions. A series of design factors, including sample sizes at two levels, the distinctness and the complexity of the latent structure, and the number of indicators were manipulated. The results revealed that larger samples are required when the latent classes are less distinct and more complex with fewer indicators. This study also provides recommendations about the minimum required sample sizes that satisfied all four criteria—model selection accuracy, parameter estimation bias, standard error bias, and coverage rate—as well as rules of thumb for sample size requirements when applying MLCMs in data analysis.
Subject
Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献