On Modeling Missing Data in Structural Investigations Based on Tetrachoric Correlations With Free and Fixed Factor Loadings

Author:

Schweizer Karl1ORCID,Gold Andreas1,Krampen Dorothea1ORCID

Affiliation:

1. Goethe University Frankfurt, Germany

Abstract

In modeling missing data, the missing data latent variable of the confirmatory factor model accounts for systematic variation associated with missing data so that replacement of what is missing is not required. This study aimed at extending the modeling missing data approach to tetrachoric correlations as input and at exploring the consequences of switching between models with free and fixed factor loadings. In a simulation study, confirmatory factor analysis (CFA) models with and without a missing data latent variable were used for investigating the structure of data with and without missing data. In addition, the numbers of columns of data sets with missing data and the amount of missing data were varied. The root mean square error of approximation (RMSEA) results revealed that an additional missing data latent variable recovered the degree-of-model fit characterizing complete data when tetrachoric correlations served as input while comparative fit index (CFI) results showed overestimation of this degree-of-model fit. Whereas the results for fixed factor loadings were in line with the assumptions of modeling missing data, the other results showed only partial agreement. Therefore, modeling missing data with fixed factor loadings is recommended.

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3