Affiliation:
1. York University, Toronto, Ontario, Canada
2. University of Maryland, College Park, USA
Abstract
Fit indices are descriptive measures that can help evaluate how well a confirmatory factor analysis (CFA) model fits a researcher’s data. In multigroup models, before between-group comparisons are made, fit indices may be used to evaluate measurement invariance by assessing the degree to which multiple groups’ data are consistent with increasingly constrained nested models. One such fit index is an adaptation of the root mean square error of approximation (RMSEA) called RMSEAD. This index embeds the chi-square and degree-of-freedom differences into a modified RMSEA formula. The present study comprehensively compared RMSEAD to ΔRMSEA, the difference between two RMSEA values associated with a comparison of nested models. The comparison consisted of both derivations as well as a population analysis using one-factor CFA models with features common to those found in practical research. The findings demonstrated that for the same model, RMSEAD will always have increased sensitivity relative to ΔRMSEA with an increasing number of indicator variables. The study also indicated that RMSEAD had increased ability to detect noninvariance relative to ΔRMSEA in one-factor models. For these reasons, when evaluating measurement invariance, RMSEAD is recommended instead of ΔRMSEA.
Subject
Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献