Multimodal Data Fusion to Detect Preknowledge Test-Taking Behavior Using Machine Learning

Author:

Man Kaiwen1ORCID

Affiliation:

1. The University of Alabama, Tuscaloosa, USA

Abstract

In various fields, including college admission, medical board certifications, and military recruitment, high-stakes decisions are frequently made based on scores obtained from large-scale assessments. These decisions necessitate precise and reliable scores that enable valid inferences to be drawn about test-takers. However, the ability of such tests to provide reliable, accurate inference on a test-taker’s performance could be jeopardized by aberrant test-taking practices, for instance, practicing real items prior to the test. As a result, it is crucial for administrators of such assessments to develop strategies that detect potential aberrant test-takers after data collection. The aim of this study is to explore the implementation of machine learning methods in combination with multimodal data fusion strategies that integrate bio-information technology, such as eye-tracking, and psychometric measures, including response times and item responses, to detect aberrant test-taking behaviors in technology-assisted remote testing settings.

Funder

Institute of Educational Sciences

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3