Affiliation:
1. University of Notre Dame,
2. University of Illinois at Urbana-Champaign
3. Graduate Management Admissions Council
Abstract
a-stratification is a method that utilizes items with small discrimination (a) parameters early in an exam and those with higher a values when more is learned about the ability parameter. It can achieve much better item usage than the maximum information criterion (MIC). To make a-stratification more practical and more widely applicable, a method for weighting the item selection process in a-stratification as a means of satisfying multiple test constraints is proposed. This method is studied in simulation against an analogous method without stratification as well as a-stratification using descending-rather than ascending- a procedures. In addition, a variation of a-stratification that allows for unbalanced usage of a parameters is included in the study to examine the trade-off between efficiency and exposure control. Finally, MIC and randomized item selection are included as baseline measures. Results indicate that the weighting mechanism successfully addresses the constraints, that stratification helps to a great extent balancing exposure rates, and that the ascending- a design improves measurement precision.
Subject
Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献