On the Use of Nonparametric Item Characteristic Curve Estimation Techniques for Checking Parametric Model Fit

Author:

Lee Young-Sun1,Wollack James A.2,Douglas Jeffrey3

Affiliation:

1. Teachers College, Columbia University,

2. University of Wisconsin-Madison

3. University of Illinois-Urbana Champaign

Abstract

The purpose of this study was to assess the model fit of a 2PL through comparison with the nonparametric item characteristic curve (ICC) estimation procedures. Results indicate that three nonparametric procedures implemented produced ICCs that are similar to that of the 2PL for items simulated to fit the 2PL. However for misfitting items, especially nonmonotone items, the greatest difference is between the 2PL and kernel smoothing procedures. In general, the differences between ICCs from the nonparametric procedures and the 2PL are reduced as both sample size and test length increase. The false positive rate of the test for model fit is promising for nonparametric ICC estimation methods. Power to detect misfitting items simulated with 4PL is low. Power to detect nonmonotone items is generally much higher. Power is best for kernel smoothing but also good for isotonic regression in the medium to large sample sizes and longer test length conditions. Power for the smoothed isotonic regression is uniformly low.

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3