Accuracy of Revised and Traditional Parallel Analyses for Assessing Dimensionality with Binary Data

Author:

Green Samuel B.1,Redell Nickalus1,Thompson Marilyn S.1,Levy Roy1

Affiliation:

1. Arizona State University, Tempe, AZ, USA

Abstract

Parallel analysis (PA) is a useful empirical tool for assessing the number of factors in exploratory factor analysis. On conceptual and empirical grounds, we argue for a revision to PA that makes it more consistent with hypothesis testing. Using Monte Carlo methods, we evaluated the relative accuracy of the revised PA (R-PA) and traditional PA (T-PA) methods for factor analysis of tetrachoric correlations between items with binary responses. We manipulated five data generation factors: number of observations, type of factor model, factor loadings, correlation between factors, and distribution of thresholds. The R-PA method tended to be more accurate than T-PA, although not uniformly across conditions. R-PA tended to perform better relative to T-PA if the underlying model (a) was unidimensional but had some unique items, (b) had highly correlated factors, or (c) had a general factor as well as a group factor. In addition, R-PA tended to outperform T-PA if items had higher factor loadings and sample size was large. A major disadvantage of the T-PA method was that it frequently yielded inflated Type I error rates.

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3