Non-iterative Conditional Pairwise Estimation for the Rating Scale Model

Author:

Elliott Mark1ORCID,Buttery Paula1

Affiliation:

1. University of Cambridge, Cambridge, UK

Abstract

We investigate two non-iterative estimation procedures for Rasch models, the pair-wise estimation procedure (PAIR) and the Eigenvector method (EVM), and identify theoretical issues with EVM for rating scale model (RSM) threshold estimation. We develop a new procedure to resolve these issues—the conditional pairwise adjacent thresholds procedure (CPAT)—and test the methods using a large number of simulated datasets to compare the estimates against known generating parameters. We find support for our hypotheses, in particular that EVM threshold estimates suffer from theoretical issues which lead to biased estimates and that CPAT represents a means of resolving these issues. These findings are both statistically significant ( p < .001) and of a large effect size. We conclude that CPAT deserves serious consideration as a conditional, computationally efficient approach to Rasch parameter estimation for the RSM. CPAT has particular potential for use in contexts where computational load may be an issue, such as systems with multiple online algorithms and large test banks with sparse data designs.

Funder

Cambridge Assessment

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3