A Short Note on Obtaining Point Estimates of the IRT Ability Parameter With MCMC Estimation in Mplus: How Many Plausible Values Are Needed?

Author:

Luo Yong1,Dimitrov Dimiter M.12

Affiliation:

1. National Center for Assessment, Riyadh, Saudi Arabia

2. George Mason University, Fairfax, VA, USA

Abstract

Plausible values can be used to either estimate population-level statistics or compute point estimates of latent variables. While it is well known that five plausible values are usually sufficient for accurate estimation of population-level statistics in large-scale surveys, the minimum number of plausible values needed to obtain accurate latent variable point estimates is unclear. This is especially relevant when an item response theory (IRT) model is estimated with MCMC (Markov chain Monte Carlo) methods in Mplus and point estimates of the IRT ability parameter are of interest, as Mplus only estimates the posterior distribution of each ability parameter. In order to obtain point estimates of the ability parameter, a number of plausible values can be drawn from the posterior distribution of each individual ability parameter and their mean (the posterior mean ability estimate) can be used as an individual ability point estimate. In this note, we conducted a simulation study to investigate how many plausible values were needed to obtain accurate posterior mean ability estimates. The results indicate that 20 is the minimum number of plausible values required to obtain point estimates of the IRT ability parameter that are comparable to marginal maximum likelihood estimation(MMLE)/expected a posteriori (EAP) estimates. A real dataset was used to demonstrate the comparison between MMLE/EAP point estimates and posterior mean ability estimates based on different number of plausible values.

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3