Eccentricity Effect of Deformation Detection for Radial Frequency Patterns With Their Centers at Fixation Point

Author:

Feng Yang1,Wu Qiong2,Yang Jiajia,Takahashi Satoshi,Ejima Yoshimichi3,Wu Jinglong4ORCID,Zhang Ming5

Affiliation:

1. Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Japan

2. Department of Psychology, Suzhou University of Science and Technology, China; Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan

3. Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan

4. Key Laboratory of Biomimetic Robots and System, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, China; Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan

5. Department of Psychology, Suzhou University of Science and Technology, China; Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan; Department of Psychology, Soochow University, China

Abstract

We measured the eccentricity effect of deformation thresholds of circular contours for two types of the radial frequency (RF) patterns with their centers at the fixation point: constant circular contour frequency (CCF) RF patterns and constant RF magnified (retino-cortical scaling) RF patterns. We varied the eccentricity by changing the mean radius of the RF patterns while keeping the centers of the RF patterns at the fixation point. Our peripheral stimulus presentation was distinguished from previous studies which have simply translated RF patterns at different locations in the visual field. Sensitivity for such shape discrimination fell off as the moderate and high CCF patterns were presented on more eccentric sites but did not as the low CCF patterns. However, sensitivity held constant as the magnified RF patterns were presented on more eccentric sites, indicating that the eccentricity effects observed for the high and moderate CCF patterns were neutralized by retinocortical mapping. Notably, sensitivity for the magnified RF patterns with large radii (4°–16°) presented in the peripheral field revealed a similar RF dependence observed for RF patterns with small radii (0.25°–1.0°) presented at the fovea in previous studies.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3