How Much Spatial Information Is Lost in the Sensory Substitution Process? Comparing Visual, Tactile, and Auditory Approaches

Author:

Richardson Michael1,Thar Jan2,Alvarez James1,Borchers Jan2,Ward Jamie3ORCID,Hamilton-Fletcher Giles4ORCID

Affiliation:

1. Department of Psychology, University of Sussex, Brighton, UK

2. Media Computing Group, RWTH Aachen University, Germany

3. Department of Psychology, University of Sussex, Brighton, UK; Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK

4. Department of Psychology, University of Sussex, Brighton, UK; Neuroimaging and Visual Science Laboratory, New York University Langone Health, NY, USA

Abstract

Sensory substitution devices (SSDs) can convey visuospatial information through spatialised auditory or tactile stimulation using wearable technology. However, the level of information loss associated with this transformation is unknown. In this study, novice users discriminated the location of two objects at 1.2 m using devices that transformed a 16 × 8-depth map into spatially distributed patterns of light, sound, or touch on the abdomen. Results showed that through active sensing, participants could discriminate the vertical position of objects to a visual angle of 1°, 14°, and 21°, and their distance to 2 cm, 8 cm, and 29 cm using these visual, auditory, and haptic SSDs, respectively. Visual SSDs significantly outperformed auditory and tactile SSDs on vertical localisation, whereas for depth perception, all devices significantly differed from one another (visual > auditory > haptic). Our findings highlight the high level of acuity possible for SSDs even with low spatial resolutions (e.g., 16 × 8) and quantify the level of information loss attributable to this transformation for the SSD user. Finally, we discuss ways of closing this “modality gap” found in SSDs and conclude that this process is best benchmarked against performance with SSDs that return to their primary modality (e.g., visuospatial into visual).

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3