Visual Occlusion Decreases Motion Sickness in a Flight Simulator

Author:

Ishak Shaziela1ORCID,Bubka Andrea2,Bonato Frederick2

Affiliation:

1. School of Social Science and Human Services, Ramapo College of New Jersey, Mahwah, NJ, USA

2. Human Perception and Performance Laboratory, Saint Peter’s University, Jersey City, NJ, USA

Abstract

Sensory conflict theories of motion sickness (MS) assert that symptoms may result when incoming sensory inputs (e.g., visual and vestibular) contradict each other. Logic suggests that attenuating input from one sense may reduce conflict and hence lessen MS symptoms. In the current study, it was hypothesized that attenuating visual input by blocking light entering the eye would reduce MS symptoms in a motion provocative environment. Participants sat inside an aircraft cockpit mounted onto a motion platform that simultaneously pitched, rolled, and heaved in two conditions. In the occluded condition, participants wore “blackout” goggles and closed their eyes to block light. In the control condition, participants opened their eyes and had full view of the cockpit’s interior. Participants completed separate Simulator Sickness Questionnaires before and after each condition. The posttreatment total Simulator Sickness Questionnaires and subscores for nausea, oculomotor, and disorientation in the control condition were significantly higher than those in the occluded condition. These results suggest that under some conditions attenuating visual input may delay the onset of MS or weaken the severity of symptoms. Eliminating visual input may reduce visual/nonvisual sensory conflict by weakening the influence of the visual channel, which is consistent with the sensory conflict theory of MS.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Motion sickness and visual impairment;Brain Research Bulletin;2024-10

2. A review of carsickness mitigation: Navigating challenges and exploiting opportunities in the era of intelligent vehicles;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-08-28

3. A review on motion sickness of autonomous driving vehicles;Journal of Vibroengineering;2024-04-29

4. Estimation of Motion Sickness in Automated Vehicles using Stereoscopic Visual Simulation;J IMAGING SCI TECHN;2022

5. EEG-based evaluation of motion sickness and reducing sensory conflict in a simulated autonomous driving environment;2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2022-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3