Affiliation:
1. Department of Life Sciences, University of Trieste, Italy
Abstract
The general lines of Bayesian modeling (BM) in the study of perception are outlined here. The main thesis argued here is that BM works well only in the so-called secondary processes of perception, and in particular in cases of imperfect discriminability between stimuli, or when a judgment is required, or in cases of multistability. In cases of “primary processes,” on the other hand, it is often arbitrary and anyway superfluous, as with the laws of Gestalt. However, it is pointed out that in these latter cases, simpler and more well-established methodologies already exist, such as signal detection theory and individual choice theory. The frequent recourse to arbitrary values of a priori probabilities is also open to question.
Subject
Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献