Effect of type of organic modifier on the clay layered-based nanocomposites flammability and toxic gases emission

Author:

Attia Nour Fathi12ORCID,Nour M1,Hassan M1,Mohamed G34,Oh H2,Mahmoud Manar1

Affiliation:

1. Fire Protection Laboratory, Chemistry Division, National Institute for Standards, Giza, Egypt

2. Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH),  Jinju, Republic of Korea

3. Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

4. Egypt Nanotechnology Center, Cairo University, El-Sheikh Zayed, 6th October, Giza, 12588, Egypt

Abstract

Well dispersed polyethylene (PE) nanocomposites were developed. Montmorillonite (MMT) as aluminosilicate clay layers was modified using organic silanes of different side chains. The MMT was grafted using 3-(trimethoxysilyl)propylamine, N-[3-(trimethoxysilyl)propyl]ethylenediamine, and trimethoxyvinylsilane. The modification process of MMT using organic different silanes was elucidated using microscopic, thermogravimetric, spectroscopic, and X-ray diffraction tools. Then, the developed organoclays were dispersed uniformly in PE matrix producing well exfoliated and dispersed polymer nanocomposites. The mass loadings of dispersed organoclay were varied and the impact of organic silane structure was studied. Thermal stability and flammability properties of the developed polymer nanocomposites were evaluated. The peak heat release rate and average heat release rate were reduced by 48% and 61%, respectively compared to virgin polymer. Also, the average mass loss rate was significantly reduced by 50%. This is in addition to reduction in emission of carbon monoxide (CO) and carbon dioxide (CO2) by 45% and 56%, respectively. The effect of side chain of organosilane on the performance of modified clay layers was studied. The toxicity of gases evolved during combustion process of PE and their polymer nanocomposites were evaluated using Fourier transform infrared connected to cone calorimeter. Additionally, the influence of organic silane on the pyrolysis and toxic gases emission was further studied.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3