Radiation preparation and antimicrobial activity of Poly(PVA/starch/Ag NPs) nanocomposite towards Penicillium digitatum on citrus fruits

Author:

Salah M.1,Salem Ehab Ahmed2,Abdel-Ghaffar Ashraf Maher1ORCID,Helal Ismail M.3

Affiliation:

1. Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt

2. Food Irradiation Research Department, Industrial Irradiation Division, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt

3. Plant Research Department, Radioisotopes Application Division, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt

Abstract

The synthesis of Poly(PVA/St/Ag NPs) nanocomposite by using of gamma radiation was carried out. The progress of the reaction was examined by using different techniques such as Fourier transform infrared (FTIR), transmission electron microscopy (TEM), UV, XRD, and scanning electron microscopy (SEM). The FTIR show the successful preparation of the Poly(PVA/St/Ag NPs) nanocomposite by gamma radiation at a dose of 5 kGy. The TEM analysis displays the particle size distribution of Ag NPs and it is observed that the Ag NPs size was in the range of 21-30 nm. The SEM images show a good distribution of silver nanoparticles in the Poly(PVA/St/Ag NPs) nanocomposite. matrix, but with little agglomerations or aggregates observed on the surface of the Poly(PVA/St/Ag NPs) nanocomposite. The XRD analysis indicates that amorphous regions are enhanced in the Poly(PVA/St/Ag NPs) nanocomposite. The coating of Citrus fruits by of Poly(PVA/St/Ag NPs) nanocomposite showed better performance in inhibition of the growth of P. digitatum on citrus fruits than free Ag NPs at concentration of 30 ppm. The incorporation of Ag NPs in Poly(PVA/St/Ag NPs) nanocomposite has extremely obvious antifungal activities against P. digitatum due to the nanometer range of Ag NPs that can interact with P. digitatum surface and/or its core where it enters inside the cell, as a result, cellular metabolism is inhibited causing death of P. digitatum and subsequently exhibits antifungal activities.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3