Optimization of polymer electrolytes with the effect of concentration of additives in PEO-NH4HF2 polymer electrolytes

Author:

Sharma Jitender Paul1ORCID,Guleria Neelam2ORCID

Affiliation:

1. Department of Physics, Himachal Pradesh Technical University, Hamirpur, HP, India

2. Department of Physics, NSCBM Government College, Hamirpur, HP, India

Abstract

In the present work, nanocomposite polymer electrolyte films were prepared by solution casting technique using nanosized fumed silica to polyethylene oxide (PEO)-based polymer electrolytes containing ammonium bifluoride (NH4HF2). The ionic conductivity of 1.19 × 10−5 S cm−1 has been observed at room temperature (25°C) for 3 wt% fumed silica in PEO-10 wt% NH4HF2 polymer electrolytes after which the conductivity was observed to decrease. Furthermore, the addition of high dielectric constant plasticizer propylene carbonate (PC) in the optimized composition of nanocomposite polymer electrolytes has increased the number of charge carriers by the large dissolution of ionic salt, amorphous content, and hence the ionic conductivity. Maximum ionic conductivity obtained at room temperature was found to be 1.55 × 10−4 S cm−1 in the case of PEO-10 wt% NH4HF2-3 wt% fumed silica-0.3 (ml) PC polymer electrolytes which is five orders of magnitude higher than that of the polymer host material. Temperature-dependent ionic conductivity, activation energy, and dielectric constant studies have been described for all the compositions of polymer electrolytes. Ionic conductivity and dielectric constant studies were determined from impedance data. Polymer electrolytes containing both fumed silica and PC highlight that there is no phase transition in the polymer electrolyte and temperature dependence of ionic conductivity in the temperature range is of almost Arrhenius type. The lowest activation energy value for the highest conducting polymer electrolyte was found to be 0.172 eV. Change in melting temperature, % crystallinity ( χ c), and mechanical properties have also been observed in polymer electrolytes containing fumed silica as well as PC as studied by Differential Scanning Calorimetry/Thermogravimetric Analysis (DSC/TGA) and universal testing machine, respectively.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Reference59 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3