Affiliation:
1. Department of Materials Science and Engineering, Materials Processing and Applications Development Center, University of Alabama at Birmingham, Birmingham, AL, USA
Abstract
This article looks at liquid molding of polyamide 6 (PA6) via vacuum assisted resin transfer molding (VARTM) of discontinuous recycled carbon fiber composites. Its mechanical, thermal, and optical characterization is compared to hydroentanglement/compression molding. Liquid-molded composites show consistent improvement in their tensile and impact properties at three different weight fractions in comparison to hydroentanglement/compression molding. There was roughly a 10 and 13% increase in its tensile strength, modulus, and impact strength properties at 30 and 40% weight fractions and almost a 120% increase at 50% weight fraction. Fourier-transform infrared spectroscopy and differential scanning calorimetry data show that the caprolactam was synthesized to PA6 and was comparable to commercial grade PA6 used in this research. Scanning electron microscopy studies show poor wet out in the case of hydroentanglement/compression molding as compared to VARTM. The combination of better mechanical performance and lower processing temperature (165°C) shows promise in being a viable method to process PA6-based recycled fiber composites.
Subject
Condensed Matter Physics,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献