Significant reinforcement of polypropylene/wood flour composites by high extent of interfacial interaction

Author:

Jiang Xianyou1,Wang Jikui12,Wu Genhua2,Peng Xing1,Ma Xiangyan1

Affiliation:

1. Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China

2. Collaborative Innovation Center for Petrochemical New Materials, Anqing, Anhui, People’s Republic of China

Abstract

Polypropylene (PP)/wood flour/fiber (WF) composites with strong interfacial compatibility were prepared, and properties of the composites were studied. First, the wood fiber was surface modified by alkali treatment—this process is also termed as fibrillation that creates rough surface, cavities, and much interspace between smaller fibrils. Then multi-monomer grafted copolymers of PP (MPP-St) and PP wax (MPPW-St) were synthesized. The so synthesized MPP-St/MPPW-St well compatibilized the interfaces of the PP/alkali-treated WF (TWF) composites. Mechanical property and water resistance results demonstrated that synergistically compatibilized PP/TWF composites had a better performance than composites compatibilized by MPE-St or MPPW-St separately, uncompatibilized composites, and PP/untreated wood flour (UWF) composites. The interfacial structures of all these composites were characterized by scanning electron microscopy. A three-dimensional mold was constructed to reveal that MPP-St affords a strong interfacial interaction between PP and rough surface of treated fiber, while MPPW-St supplements the interfacial interaction by permeating into the interspace between smaller fibrils of alkali-treated fiber. The mold fitted the results very well.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3