Dynamic mechanical analysis of PA 6 under hydrothermal influences and viscoelastic material modeling

Author:

Kehrer Loredana1ORCID,Keursten Johannes1,Hirschberg Valerian2,Böhlke Thomas1

Affiliation:

1. Institute of Engineering Mechanics, Chair for Continuum Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

2. Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract

Polyamides serve as matrix material for fiber reinforced composites and are widely applied in many different engineering applications. In this context, they are exposed to various environmental influences ranging from temperature to humidity. Thus, the influence of these environmental conditions on the mechanical behavior and the associated implications on the performance of the material is of utmost importance. In this work, the thermoviscoelastic behavior of polyamide 6 (PA 6) for two equilibrium moisture contents is investigated. To this end, dynamic mechanical analysis tests with and without humidity control of the environmental chamber were performed. In terms of relaxation tests, the experimental results reveal drying effects and increased diffusion activities when the sample’s equilibrium moisture content differs from the ambient humidity level within the testing chamber. Temperature-frequency tests quantify the humidity-induced shift of the glass transition temperature. The linear generalized Maxwell model (GMM) and time-temperature superposition are used to analyze the hydrothermal effects on the linear viscoelastic material properties and the onset of mechanical nonlinearity. Based on these investigations and findings, insight is gained on the humidity influence on the material properties and the limitations of linear thermoviscoelastic modeling. Furthermore, the computational construction of master curves and the parameter identification for a generalized Maxwell model are described in detail.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3