Tribological studies on effect of mixture of fillers in polystyrene matrix composites

Author:

Keshavanarayana Gopalakrishna1,Divakar Canchi2,Venkatesh Krishna1,Mohan C Bhoganarasimhaiah1,Bhatta KG Lakshminarayana1,Murali Lakshminarayana1

Affiliation:

1. Center for Emerging Technologies, Jain University, Jakkasandra Post, Kanakapura Taluk, Bengaluru, India

2. High Pressure Laboratory, Materials Science Division, National Aerospace Laboratories, CSIR, Bengaluru, India

Abstract

Addition of measured amounts of fillers into a polymer matrix is expected to improve the desired properties of the composites. Also the ease of processability of the matrix and reinforcement is always desired. Use of powder fillers in the polymer matrix at ambient conditions would make the processing much easier. This will help in in situ applications. In the present work, polymer–matrix composites are prepared with polystyrene as the matrix using metal (copper/aluminum/steel) and ceramic (alumina) fillers at ambient conditions. The composites with metallic and ceramic fillers in the ratio of 50:25:25 wt% (polymer:filler 1:filler 2) designated as three-phase composites were investigated for tribological applications. Both copper and aluminum fillers were considered for comparison in terms of their contribution to tribological behavior because of their thermal conductivity, specific heat and density. Polystyrene is filled with metal powder (copper, aluminum or steel) and alumina in equal proportion and subjected to wear and friction tests. The polymer steel–ceramic composite has the least with the other two composites having almost the same values of friction coefficient. The polymer aluminum–ceramic composite has the least wear at all operating conditions. Polymer aluminum–ceramic composite was found to have better wear behavior among the three-phase composites. This may be attributed to the favorable value of density of aluminum, moderate thermal conductivity and excellent specific heat.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3