Effect of ellipse motion paths with different aspect ratios on friction and wear of highly crosslinked polyethylene

Author:

Zhang Xinyue1,Zhang Dekun2,Chen Kai2ORCID,Xu Handong1

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, People’s Republic of China

2. School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, People’s Republic of China

Abstract

Cobalt chromium molybdenum alloy and highly cross-linked polyethylene are selected as the counterpairs in this study to carry out friction and wear testing over different ellipse motion paths to explore the influence of ellipse motion path on friction and wear of prosthesis materials. Here, the analytical methods for the periodic friction coefficient and special point wear are proposed to investigate the relationship between motion paths and tribological properties. The damage mechanism model of high cross-linked polyethyleneunder ellipse motion paths was established, which revealed the connection among material composition, motion paths and friction and wear mechanism. The results show that the friction coefficient and wear morphology are directly affected by changes in motion paths. The friction coefficient decreases with increasing aspect ratios, and the wear profile depth increases with increasing aspect ratios. The spatially resolved friction coefficient curve distinctly exhibits periodic “W”-type variation in elliptical motion paths. The friction coefficient shows maximum values at the long-axis endpoints and minimum values at the short-axis endpoints. There are different wear morphologies in different characteristic areas over the elliptical wear paths. The wear profile depth and width at the long-axis endpoints are larger than those at the short-axis endpoints, and the wear morphology is also more serious.

Funder

A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3