Effects of multiple extrusions on structure–property relationships of hybrid wood flour/poly (vinyl chloride) composites

Author:

Nadali Elham1,Naghdi Reza1ORCID

Affiliation:

1. Department of Wood and Paper Science and Technology, Faculty of Natural Resources and Desert Studies, Semnan University, Semnan, Iran

Abstract

This study emphasizes on closed-loop recycling of wood flour/poly (vinyl chloride) composites, since there is normally a considerable amount of material waste in wood plastic production lines. Composite materials were produced and subjected to four times reprocessing cycles under industrial conditions. Detailed analytical methods including bending strength, modulus of elasticity, impact strength, scanning electron microscopy, fiber length, water absorption, contact angle, Fourier transform infrared, and dynamic mechanical thermal analysis (DMTA) were conducted to evaluate the effects of recycling on the mentioned composites. Results demonstrated that the recycled composites, except for the four-time recycled ones, had lower bending strength, modulus of elasticity, and impact strength due to fiber-chain scission/fracture resulting from shear stress during reprocessing; however, impact strength remained almost unchanged after the first recycling cycle. Results also revealed that generally the reprocessed composites showed lower water absorption rates due to better fiber wetting and encapsulation. There was also a reduction in hemicellulose hydroxyl groups, rendering the recycled composites less hydrophilic. DMTA results showed an increase in mechanical loss factor (tan δ) for all the reprocessed composites showing a more viscous than elastic nature. The glass transition temperature of Rec4 composites increased due to polymer dehydrochlorination and the resulting cross-linking, which restricted the molecular mobility of the polymer chains.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3