Electrical properties, characterization, and preparation of composite materials containing a polymethacrylate with α-naphthyl side group and nanographene fillers

Author:

Abubakar Abdullahi Musa1,Biryan Fatih1,Demirelli Kadir1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, University of Fırat, Elazig, Turkey

Abstract

2-(Naphthalene-1-yl oxy)-2-oxoethyl methacrylate (NOEMA) was synthesized from reaction of naphthalene-1-yl 2-chloroacetate and sodium methacrylate and its homopolymer was prepared by free-radical polymerization method at 60°C. The glass transition temperature of pure poly(NOEMA) was estimated as 102°C by differential scanning calorimetry technique, whereas that of poly(NOEMA) containing 10 wt% nanographene was 83°C. While pure poly(NOEMA) from thermogravimetric analysis measurements was indicating a decomposition at 290°C, poly(NOEMA) composite containing 10 wt% nanographene showed thermal decomposition temperature at 261°C. Semiconducting composites of poly(NOEMA) have been prepared by adding nanographene particles to poly(NOEMA) for preparing nanocomposites with different weight percentages (2, 3, 4, 5, and 10 wt%). The dielectric constant, ∊′, and dielectric loss factor, ∊″, of pure poly(NOEMA) were 3.66 and 0.052, respectively, whereas those of poly(NOEMA) containing 10 wt% nanographene were 186 and 210,152, respectively. Alternating current (AC) conductivity of pure poly(NOEMA) was 2.03 × 10−9 S cm−1, whereas that of poly(NOEMA) containing 10 wt% nanographene was 0.00134 S cm−1. AC conductivity mechanism of poly(NOEMA)/10 wt% nanographene composite indicated the correlated barrier hopping model. Activation energy values of poly(NOEMA)/ x wt% nanographene composites was estimated to be between 4.783 eV and 0.209 eV. The polymer composite/p-Si thin-film heterojunction diode properties have been investigated from current–voltage at room temperature. The electrical parameters of the prepared diodes such as ideality factor ( n), the barrier height (BH; Φ b), rectification ratio, and reverse saturation current ( I o) were investigated at dark and room temperature. The ideality factor ( n) value of the Al/poly(NOEMA)/ x wt% nanographene/p-Si/Al diode for dark was found to be between 5.147 and 7.504, respectively. The BH ( Φ b) value of the Al/poly(NOEMA)/ x wt% nanographene/p-Si/Al diode at dark was found to be between 0.228 and 0.64.

Funder

Firat University Research Fund

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3