Developments of High-performance Composites by Innovative ex situ Concept for Aerospace Application

Author:

Yi Xiao-Su1,Xuefeng An 2

Affiliation:

1. National Key Laboratory of Advanced Composites (LAC/BIAM) Beijing 100095, China,

2. National Key Laboratory of Advanced Composites (LAC/BIAM) Beijing 100095, China

Abstract

In the framework of the National Key Basic Research Program (973 Program) we focus our attention on research and development of (1) continuous enhancement of composites performance both for new generation and existing materials, (2) cost-effective manufacturing technologies, particularly resin transfer molding (RTM) in conjunction with textile technology, and (3) crashworthy composite structures in design, and manufacturing and simulation methodology for aircraft composites. Many successful example stories, such as ex situ concept, have demonstrated that the performance potential of composites could be enhanced and maximized by basically understanding the complicated multi-scale and multidimensional structural characteristics in relation to properties. Based on the concept, graphite composites system with generally high-impact damage resistance and balanced processing conditions has being developed consisting of base resins, modifiers, and binders/tackifiers.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3