Processing and characterization of the thermoplastic composites manufactured by ultrasonic vibration–assisted automated fiber placement

Author:

Chu Qiyi1,Li Yong1,Xiao Jun1,Huan Dajun1,Zhang Xiangyang1,Chen Xiaodong1

Affiliation:

1. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

To obtain the autoclave-level mechanical properties using in situ consolidation of thermoplastic composites by automated fiber placement (AFP) with high efficiency is the focus of recent research. Different heat resources were utilized to pursue improved mechanical properties and deposition rates but yet not very satisfactory. In this article, E-glass fiber/polypropylene laminates, manufactured by ultrasonic vibration–assisted AFP (UAFP) and autoclave, were compared by means of mechanical properties and crystallization. The interfacial bonding mechanism was analyzed theoretically based on the principle of ultrasonic heating and the autohesion. The orthogonal tests were designed to study the effect of the process parameters on the interlaminar shear strength (ILSS), including the ultrasonic amplitude, layup speed, and pressure, to optimize the manufacturing process of specimens. The mechanical tests and differential scanning calorimetry (DSC) were utilized to evaluate the ILSS, mode I interlaminar fracture toughness GIC, impact toughness, and degree of crystalline of laminates from hot-press and UAFP. The experimental results indicate that the ILSS of the specimens from UAFP can match with the hot-press specimens. The GIC and the impact toughness of the UAFP specimens are 59.9% and 20.1% lower than the hot-press ones, respectively, which are due to the lower degree of crystalline caused by the higher cooling rate during the UAFP process. The results of DSC show that the crystallinity of specimens made from UAFP is only 38.5%, whereas the 49.2% crystallinity is tested for the hot-press.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3