Morphology and mechanical properties of polypropylene/ethylene acrylic acid/maleic anhybride-grafted polypropylene/organoclay nanocomposites

Author:

Tian Qin1234,Qin Shuhao2,Wu Fuzhong1,Jin Huixin1,Yang Ming1,He Wentao2,Xu Guomin2

Affiliation:

1. College of Material and Metallurgy, Guizhou University, Guizhou, Guiyang, China

2. National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guizhou, Guiyang, China

3. Guizhou Provincial Key Laboratory for Metallurgical Engineering and Energy-Saving in Process, Guizhou, Guiyang, China

4. Guizhou Provincial Engineering Center of Metallurgical Industry Energy Conservation, Guizhou, Guiyang, China

Abstract

Polypropylene (PP)/ethylene acrylic acid (EAA)/maleic anhybride-grafted PP (PP- g-MA)/organoclay nanocomposites were prepared using the melt mixing technique, and PP- g-MA and EAA were employed as the compatibilizers. The sodium montmorillonite (MMT) were pretreated with high-speed airflow pulverization method and then grafted using γ-glycidoxypropyltrimethoxysilane, followed by modification using trihexyltetradecylphosphonium chloride cation with supercritical carbon dioxide as the reaction medium (the obtained product was abbreviated as OGMMT). The modification of MMT was characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy. The effect of organoclay content on microstructure and mechanical properties of PP/EAA/PP- g-MA/OGMMT nanocomposites was investigated by XRD, transmission electron microscopy, dynamic mechanical analysis, tensile strength, notched impact strength, flexural strength, and flexural modulus. The results show that the OGMMT has a high weight loss, a large d-spacing increment, and exfoliation predomination structure. The addition of compatibilizers benefited the formation of exfoliated structure and the dispersion of OGMMT in PP matrix, and hence, enhanced the storage modulus ( G′) below the glass transition temperature ( Tg), storage modulus ( G″), Tg, tensile strength, flexural strength, and flexural modulus of the nanocomposites. Furthermore, with the increasing OGMMT content, the nanocomposites exhibited very inconsiderable alteration in the clay dispersion level and enhanced G′ below the Tg, G″, tensile strength, flexural strength, and flexural modulus of the nanocomposites, whereas the Tg was invariant. As a whole, the introduction of compatibilizers and OGMMT led to the reduction of notched impact strength, which also nearly linearly decreased with increasing clay content.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3