Development of reduced Graphene oxide modified Ultrahigh molecular weight polyethylene (rGO/UHMWPE) based Nanocomposites for Biomedical Applications

Author:

Singh Devendra Kumar1,Verma Rajesh Kumar2ORCID

Affiliation:

1. Materials & Morphology Laboratory, Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India

2. Department of Mechanical Engineering, School of Engineering, Harcourt Butler Technical University, Kanpur, India

Abstract

Ultrahigh molecular weight polyethylene (UHMWPE) are widely used as a biomaterial for manufacturing of prostheses, implants and other biomedical components with complex geometry and shapes. Continuous loading of these components subject to heavy stress and deformation resistance should have enhanced mechanical and chemical properties. This paper aims to improve the mechanical and thermal aspects of the conventional UHMWPE by supplementing reduced Graphene oxide (rGO) in varying weight percentages to develop polymer bio nanocomposite samples. The effect of green synthesized GO nanoparticles in the UHMWPE polymer was investigated for biomedical application. The rGO was distributed in a UHMWPE matrix using a unique and optimized technique to create high-performance nanocomposites. The proposed UHMWPE filled with different loading (0, 0.5, 1.0,1.5, 2.0, and 3.0 wt.%) of rGO was produced by Ultrasonication in an acetone medium. The findings suggest that evenly distributed rGO layers were present throughout the polymer matrix. This, in turn, indicates a good connection between the fillers and matrix by Scanning electron microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX), resulting in better composite capabilities. The layers of rGO-aided lamellar arrangements and microfibers between the crystals were observed in the results. The Microhardness of the bio nanocomposite (1 Wt.% rGO/UHMWPE) with 1wt.% rGO in the UHMWPE matrix increased by 2.8% compared to an unfilled polymer. At the same rGO concentration, the bio nanocomposite had a crystallization degree of 46.96%. To achieve optimal performance, rGO content of 1wt.% was added to the sample, which is ideal in many situations where good mechanical and thermal qualities are required during operation. The outcomes reveal that the rGO supplement primarily boosts the thermo-mechanical performances of the modified bio-nano composites for orthopedic products.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3