Effect of mussel shell reinforcement on mechanical and tribological behavior of polyphenylene sulfide composites

Author:

Sahin Alp Eren1ORCID,Cetin Beysim1,Sinmazcelik Tamer1

Affiliation:

1. Department of Mechanical Engineering, Kocaeli University, Kocaeli, Turkey

Abstract

Polyphenylene sulfide (PPS) is commonly used in automobile industry, aeronautics and space electrical–electronic components, and mechanical applications. Mussel shell wastes could be an economical reinforcement alternative for polymer-based composites. Which also gets out the environmental trouble of mussel shell wastes. To examine the effect of mussel shell wastes as reinforcing material, particulate mussel shell wastes were incorporated into the PPS matrix in different mass ratios (0, 1, 3, 5, and 10 wt%). Materials were characterized with ball on disc, scratch, solid particle erosion, hardness, and tensile tests. According to tensile test results, mussel shell reinforcement has a positive effect on elastic modulus and tensile strength of PPS. Moreover, mussel shell filling increased the adhesive wear resistance of PPS. According to scratch test results, scratch hardness value was increased, and residual penetration depth was decreased by mussel shell reinforcement. Furthermore, adding mussel shells in PPS increased the cutting volume value and the scratch behavior of PPS turn from ductile to brittle. Mussel shell waste supplementation increased solid particle erosion resistance at low particle impact angles but decreased it at right angles and those close to right angles. The erosive wear resistance of the PPS samples increased at 30° impingement angle by mussel shell reinforcement. The plastic deformation ability of PPS was decreased by adding mussel cell. As a result of this study, it is seen that usage of mussel shell wastes could be possible in the PPS matrix as a reinforcement material.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3