Analysis and prediction of the joint strength of friction stir welded Aluminium 5754 to polyamide using response surface methodology and artificial neural network

Author:

S J Adarsh1ORCID,Natarajan Arivazhagan1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

Abstract

Lightweight hybrid structures are developing these days due to increased demand for fuel economy and lower emissions in the automotive and aerospace industries. This study aims to analyse and optimise the influence of friction stir welding (FSW) process parameters on the tensile shear strength of the aluminium-polyamide hybrid joint. The study on the influence of each parameter on the joint strength helps define the bonding mechanism while joining aluminium-polymer hybrid structures. Optical microscopy and scanning electron microscopy (SEM) were used for microstructural examination. A SEM image of the weld’s cross-sectional area shows micro and macro mechanical interlocks with a small interfacial gap which indicates better joint strength. An elemental area mapping investigation of the weld zone reveals fine polymer and aluminium mixing along the interaction region. In addition, FSW parameters have been optimized to maximize the tensile shear strength of aluminium-polyamide hybrid joints. A mathematical model for tensile shear strength in terms of FSW parameters is developed using response surface methodology (RSM). A predictive model was developed using an Artificial Neural Network (ANN) to validate RSM predicted results. The analysis of variance (ANOVA) shows that the actual and predicted values have a satisfactory correlation. ANN methods are better than regression models in predicting tensile shear strength within input welding parameter ranges. The process variables were optimised using the desirability function analysis. The maximum joint tensile shear strength of about 19.74 MPa and attained at optimal FSW parameters, i.e. rotational tool speed of 1421 r/min, welding speed of 27 mm/min, and tool tilt angle of 1°. The regression coefficient for the ANN model was 0.988 for the test data set, indicating that the developed model is appropriate for predicting tensile shear strength.

Funder

Vellore Institute of Technology

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3