Influence of surface treatments and addition of a reactive agent on the properties of PLA/flax and PLA/bamboo composites

Author:

Nlandu-Mayamba Hervé1,Taguet Aurélie1,Perrin Didier1,Joannès Sébastien2,Delor-Jestin Florence3,Askanian Haroutioun3,Lopez-Cuesta José-Marie1

Affiliation:

1. Polymers Composites and Hybrids (PCH), IMT Mines Ales, Ales, France

2. MINES Paris, CNRS UMR, PSL University Centre des Matériaux (MAT), Evry Cedex, France

3. Clermont Auvergne Université, UMR CNRS 6296, CA INP, ICCF Institut de Chimie de Clermont-Ferrand, Aubière, France

Abstract

Polylactic acid (PLA) composites reinforced with 10 wt% of flax (FF) or bamboo (BF) fibers were prepared via an internal mixer and/or twin-screw extrusion. Alkali pretreated fibers were soaked in silane to improve adhesion between fibers and matrix. 0.8 wt% of Joncryl™, a grafted copolymer acting as PLA chain extender, was also used alone or in combination with silane treatment of fibers to improve interfacial adhesion. The influence of silane treatment and/or Joncryl on the composite materials on mechanical, thermal and thermomechanical properties of materials processed through injection molding was investigated. Improved adhesion of the fibers to the matrix was shown using a scanning electron microscope. Fourier Transform Infrared Spectroscopy indicated that chemical bonds were formed between the silane coupling agent and fibers. X-ray Photo-electron Spectroscopy confirmed that fibers and silane derivatives were effectively coupled. XPS also highlighted that silane coupling agent reacted in higher amounts on bamboo than flax fibers, probably due to a higher amount of lignin in the case of bamboo fibers. Thermogravimetric analyses indicated that silane-treated flax and bamboo increased the thermal stability of the corresponding composites (PLA-SFF and PLA-SFB) compared to non-treated fiber composites. The incorporation of Joncryl alone entailed a degradation of the thermal stability of the corresponding composites (PLAJ-FF and PLAJ-FB) but enhanced the PLA/fibers interfacial adhesion. The combination of Joncryl and silane treatment resulted in strong improvements of thermal stability and interfacial adhesion for the PLAJ-SFF and PLAJ-SBF composites. Increase in tensile moduli and decrease in tensile strengths with the incorporation of the pristine fibers were noted. For silane-treated fibers, the tensile modulus and the strength of the corresponding composites were improved when adding Joncryl alone or in combination with silane. From also rheological and molar weight measurements, it could be concluded that Joncryl acts both as PLA chain extender and coupling agent.

Funder

Institut Carnot MINES

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3