Affiliation:
1. Department of Mechanical Engineering, National Institute of Technical Teachers Training and Research, Chandigarh, India
Abstract
Some studies have outlined the use of 3D-printed polyvinylidene fluoride (PVDF) composite-based solid intramedullary (IM) pins with tunable mechanical (tensile, compressive, flexural, and torsional) properties for orthopedic applications. But hitherto little has been reported on the effect of meta-structure induced in 3D-printed IM pins for canines from the mechanical properties’ viewpoint. This study highlights the design, fabrication, and testing to mimic actual loading conditions in the canine femur bone on novel IM pin with meta-structure employed in different length zones (30%, 40%, and 50% of total gauge length) prepared by fused filament fabrication (FFF) of PVDF composite. The IM pin (of length 150 mm) has square threads (pitch 2 mm) at the distal end (ɸ7 mm, up to 60 mm in length), and V threads (pitch 1.5 mm) at the proximal end (ɸ6 mm, up to 30 mm in length). The IM pin was fabricated at the best setting (of the FFF process) suggested by the multifactor optimization (at nozzle temperature (Nt) 235°C, printing speed (Ps) 60 mm/s, and raster angle (RA) 45°). The result suggests that for the solid IM pins prepared at the optimized settings the observed elongation, peak load (PL), and break load (BL) during tensile and compressive loading were 4.83 mm, 968.40 N, 958.20 N, and 14.19 mm, 412.80 N, 371.52 N respectively. Whereas for 50% meta-structure the observed elongation, PL, and BL during tensile and compressive loading were 14.49 mm, 405.49 N, 90.20 N, and 13.23 mm, 243.20 N, 218.88 N respectively. For both tensile and compression loading (in this case study), better elongation was noticed for the FFF-based IM pin with 50% meta-structure and hence recommended for implantation in the canine femur bone. The results are also supported by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) based surface characteristics of the fracture sites.
Funder
Department of Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献