Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling

Author:

Magri Anouar El12,El Mabrouk Khalil1ORCID,Vaudreuil Sébastien1,Touhami Mohamed Ebn2

Affiliation:

1. Euromed Research Center, Euromed Engineering Faculty, Euro-Mediterranean University of Fes, Fes, Morocco

2. Laboratory of Materials Engineering and Environment: Modeling and Application, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco

Abstract

Many parameters of fused deposition modeling (FDM) influence the resulting mechanical properties. This can become a key factor if those parts are intended for commercial applications. This study focuses on the influence of nozzle temperature and infill line orientations for parts made with short carbon fiber (CF)-reinforced polylactic acid (PLA). Tests bars made of PLA and PLA-CF composite were produced under carefully selected conditions. As expected, PLA-CF yields higher tensile properties compared to PLA, owing to the strengthening effect of high modulus CFs. Maximum tensile properties are attained for a nozzle temperature of 230°C, for both PLA and PLA-CF. This temperature was thus selected for probing the effects of infill orientations in test bars. Among the multiple orientations tested, the combination [0°, 15°, −15°] relative to the long axis of the test bar yields the highest levels of tensile properties for both PLA and PLA-CF over the “all-purpose” [45°, 135°] orientation. Annealing can also affect crystallinity and mechanical properties of manufactured parts. Through differential scanning calorimetric analyses, the degree of crystallinity was assessed for samples annealed under various conditions. Results show that annealing increases crystallinity in PLA and PLA-CF samples, with a lower cooling rate yielding higher values. The Young’s modulus exhibits the same behavior for annealed and as printed parts, with a lower cooling rate yielding higher modulus values. This is attributed to a relaxation of the material structure as well as to the orientation of polymer chains toward the CFs.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3