Effects of thickness, fibre orientation and fabric textile on the low-velocity impact performances of thermoset and thermoplastic composites

Author:

Kayaaslan Melihcan1,Coskun Taner2ORCID,Unlu Ulac Murat3,Sahin Omer Sinan2

Affiliation:

1. Baykar Defence Industry, Istanbul, Turkey

2. Department of Mechanical Engineering, Konya Technical University, Konya, Turkey

3. Turkish Aerospace Industry, Ankara, Turkey

Abstract

In this study, low-velocity impact (LVI) responses for the thermoset and thermoplastic composites were experimentally investigated based on the fibre orientation, thickness and knitting architecture. To analyse dynamic responses such as bending stiffness, contact stiffness, total impulse, peak force, and absorbed/rebound energy, LVI tests at 2 and 3 m/s velocity, which correspond to the 11.2 and 25.2 J were conducted, respectively. Furthermore, impact-induced damages were examined by using Through Transmission Ultrasonic analyses and macro-scale visualizations. Results from the current study show that woven fabric reinforced composites exhibited more bending stiffness, contact stiffness and energy absorption capacity than unidirectional ones thanks to fibre alignments throughout the longitudinal and transverse directions. Moreover, resin material has favourable effects on the damage mechanisms, as expected. It has been concluded that utilization of the thermoplastic resin enabled the composite specimens to exhibit less delamination.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3