Evaluation of crystallinity, thermal, mechanical and morphological features of high density polyethylene composites reinforced with crosslinked semifluorinated acrylate polymer microspheres

Author:

Soykan Ugur1ORCID,Cetin Sedat2

Affiliation:

1. Yenicaga Yasar Celik Vocational School, Bolu Abant Izzet Baysal University, Bolu, Turkey

2. Department of Chemistry, Bolu Abant Izzet Baysal University, Bolu, Turkey

Abstract

This study mainly aims both to prepare well-shaped crosslinked 3,3,4,4,5,5,6,6,7,7,8,8,8 tridecafluorooctyl-4-(acrloyloxy) benzoate (ABCF13) polymer microspheres and to investigate the influences of the prepared microspheres addition on the crystallinity, thermal, mechanical and morphological features of high density polyethylene (HDPE). The suspension polymerization method was used for the production of well-defined microspheres and, the content of the microspheres varied from 1.0% to 10.0% in the composites. The characterization of crosslinked poly(ABCF13) microsphere-loaded HDPE composites were performed via powder X-ray diffraction, differential scanning calorimeter, universal mechanical (tensile and impact) testers and scanning electron microscope (SEM) techniques. According to the experimental findings, a and b unit cell parameters increased initially and reached maxima with the sample including 5.0% microsphere, which were followed by dramatic decreases, while c parameter remained relatively unchanged. Thermal analysis also showed that the melting temperature of HDPE reduced with the initial loading of the microspheres, then stayed at a plateau value of about 129°C due to the formation of lattice distortions, generation of microstructural disorders and the defects in the crystal structures. The mechanical test results revealed that there existed considerable improvements in tensile strength, modulus and impact strength. The maximum tensile strength 25.66 MPa, elastic modulus 499.30 MPa and maximum absorbed energy in the impact test 26.84 kJ/m2 (29%, 42% and 41% improvement, respectively) were achieved with the blend involving 5.0% microsphere. After the maxima, the mechanical characters depicted weakening trend as the microsphere content increased in the matrix. The SEM analyses revealed that although there existed fibrillar formations in all samples, the extensions decreased with the increase of the microsphere content. While ductile behavior was observed with the formation of long-bulky extensions at low contents, brittleness started to prevail at high contents with some short and thin fibrils.

Funder

Bolu Abant Izzet Baysal University

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3