Impact of hybrid nanosilica and nanoclay on the properties of palm rachis-reinforced recycled linear low-density polyethylene composites

Author:

Sadik Wagih Abdel Alim1,El Demerdash Abdel Ghaffar Maghraby1,Abbas Rafik1,Bedir Alaa1ORCID

Affiliation:

1. Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt

Abstract

The main goal of this work was to assess the technical feasibility of palm rachis (PR) as a reinforcing agent in the production of wood–plastic composites. Recycled linear low-density polyethylene/PR fiber composites were prepared at constant content (3 phc (per hundred compounds)) of maleic anhydride-grafted polyethylene as compatibilizer by melt blending method utilizing a two-roll mill and compression molding. The effect of nanosilica (NS), nanoclay (NC), and hybrid nanoparticles (NSNC) at different concentrations (2, 4, and 6 phc) on mechanical, physical, thermal, and morphological properties was investigated. The results of mechanical properties measurements demonstrated that when 6 phc NS, 4 phc NC, and 4 phc NSNC were added, tensile, modulus strength, and hardness reached their optimum values. At a high level of NC loading (6 phc), the increased populace of NC layers led to agglomeration and stress transfer gets restricted. Elongation at break and Izod impact strength were decreased by the incorporation of different nanoparticles. Water absorption and thickness swelling of prepared composites were found to decrease on the incorporation of NS and NC. In addition, the thermal stability showed slightly improved by the addition of nanoparticles, but there are no perceptible changes in the values of melting temperature by increasing the content of NS and NC or NSNC. Scanning electron microscopy study approved the good interaction of the PR fibers with the polymer matrix as well as the effectiveness of NS and NC in the improvement of the interaction. The finding indicated that wood–plastic composite treated by NS had the highest properties than other composites.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3