Effect of carbon black loading on mechanical and rheological properties of natural rubber/styrene-butadiene rubber/nitrile butadiene rubber blends

Author:

Abdelsalam Amir A12ORCID,Araby Sherif2,El-Sabbagh Salwa H3,Abdelmoneim Ahmed14,Hassan Mohsen A15ORCID

Affiliation:

1. Department of Materials Science and Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt

2. Department of Mechanical Engineering, Benha Faculty of Engineering, Benha University, Banha, Egypt

3. Department of Polymers and Pigments, National Research Centre, Dokki, Cairo, Egypt

4. Department of Physical Chemistry, National Research Center, Dokki, Cairo, Egypt

5. Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Asyut, Egypt

Abstract

This study investigated the effect of carbon black (CB) filler loading on mechanical and rheological properties of natural rubber (NR)/styrene-butadiene rubber (SBR)/nitrile butadiene rubber (NBR) ternary rubber nanocomposites. The nanocomposites were prepared using a melt mixing method. Four different samples with different filler loadings namely S2 (15 phr), S3 (30 phr), S4 (45 phr), and S5 (60 phr) were prepared in this work. The mechanical properties of these samples were investigated such as tensile strength, stress at 100, 200, and 300% elongations, elongation at break %, tear strength, compression set, compression stress, and crosslink density. Results indicate that minimum torque, maximum torque, tensile strength, stress at 100, 200, and 300% elongations, elongation at break %, tear strength, compression set, compression stress, and crosslink density were increased while the scorch time, cure time, cure rate index, elongation at break %, swelling coefficient, and filler–rubber interaction decrease with increasing CB loading. The higher value of tensile strength for these samples was S4 (loading with 45-phr CB). Therefore, had higher stiffness compared to the other content ratio. Additionally, S4 showed 233.58% increment in tensile strength. These results showed that the optimum filler loading can increase the compatibility between CB and NR/SBR/NBR. These results were confirmed by scanning electron microscope micrography.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3