Preparation of high-strength SEBS nanocomposites reinforced with halloysite nanotube: Effect of SEBS-g-MA compatibilizer

Author:

Arman Nazlı1,Tekay Emre1,Şen Sinan1ORCID

Affiliation:

1. Department of Polymer Engineering, Yalova University, Yalova, Turkey

Abstract

Poly(styrene -b-ethylene- co-butylene -b-styrene) (SEBS)/organophilic halloysite nanotube (Org-HNT) nanocomposites were prepared by solution mixing and then compression molded. Maleic anhydride grafted SEBS (SEBS- g-MA) was also used as a compatibilizer in preparation of SEBS/SEBS- g-MA/Org-HNT ternary nanocomposites. Surface morphologies and both static and dynamic mechanical analyses as well as thermal stabilities of the nanocomposites were carried out. Both the binary and ternary nanocomposites exhibited higher tensile moduli, tensile strength, and toughness values compared to neat SEBS. The elastic modulus was found to increase about 385% and 320% with addition of 3 and 5 phr Org-HNT into the SEBS matrix, respectively, while the maximum toughness was achieved via SEBS-5H composite with an increase of 45%. The ternary nanocomposite having 3 phr Org-HNT and 10 phr SEBS- g-MA (3H10SMA) gave about a 325% and 103% increase in the elastic modulus and toughness, respectively, together with a 75% increase in the tensile strength as the maximum value. This result was ascribed to interactions of the surface of the nanotubes with the maleic anhydride (MA) group of the compatibilizer. The same nanocomposite was also found to have two times higher dynamic storage modulus at 25°C than neat SEBS and almost the same damping value, which is an indication of improvement in the elastic character of SEBS without impairing its damping ability. Although a much higher damping value was obtained via use of 20 phr SEBS- g-MA with the same amount of nanotubes, the corresponding storage modulus decreased too much, close to that of neat SEBS. The enhanced tensile modulus, strength, and toughness of the 3H10SMA nanocomposite, which is consistent with its dynamic mechanical properties, indicate a good balance between the toughness/damping and stiffness. Moreover, all the nanocomposites exhibited better thermal stabilities than neat SEBS, showing higher midpoint degradation temperatures and peak maximum temperatures at which the maximum degradation occurs.

Funder

Scientific Research Projects Coordination Departments of Yalova University

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3