SiO2 films as heat resistant layers for protection of expandable polystyrene foam from flame torch–induced heat

Author:

Varnagiris S1,Tuckute S1,Lelis M1,Milcius D1ORCID

Affiliation:

1. Lithuanian Energy Institute, Kaunas, Lithuania

Abstract

Currently, polymeric insulation materials are widely used for energy saving in buildings. Despite of all benefits, these materials are generally sensitive to heat and highly flammable. This work discusses possibility to improve heat resistance of expanded polystyrene (EPS) foam using thin silicon dioxide (SiO2) films deposited by magnetron sputtering technique. In order to increase surface energy and adherence of SiO2 thin films to substrate EPS was plasma pretreated before films’ depositions using pulsed DC plasma generator for 40 s in argon gas. SiO2 formation was done in reactive argon and oxygen gas atmosphere. Laboratory made equipment was used for flame torch–induced heat resistance experiments. Results showed that silicon oxide films remains stable during heat resistance experiments up to 5 s and fully protects polystyrene (PS) substrate. Films are relatively stable for 30 s and 60 s and partially protect PS from melting and ignition. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis confirmed that SiO2 layer, which is distributed uniformly on the EPS surface, could work as a good heat resistant material.

Funder

The European Social Fund

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3