Electrical Characterization of Polyethylene oxide -Alumina composite

Author:

Elimat ZM1,Zihlif AM2,Schulte Kl3,de la Vega A3,Ragosta G4

Affiliation:

1. Applied Science Department, Faculty of Engineering Technology, Al- Balqa Applied University, Jordan

2. Department of Physics, The University of Jordan, Amman, Jordan

3. Institute of Polymers and Composites, Technical University Hamburg-Harburg, Denickestrasse 15, Hamburg 21073, Germany

4. The Institute of Chemistry and Polymer Technology (ICTP) CNR-Possouli, Napoli, Italy

Abstract

This study deals with the electrical characterization of polyethylene oxide (PEO) – alumina (Al2O3) composites at several concentrations, 0%, 5%, 10%, and 15% by weight Al2O3. The alternating current electrical properties were studied as a function of frequency in the range from 20 Hz to 1 MHz and studied with filler concentrations. Transmission light microscopy (TLM) and scanning electron microscopy (SEM) revealed that the dispersed Al2O3 particles were randomly distributed within the PEO matrix with some surface contacts between them and also revealed that the ceramic particles are tightly held by the host matrix material. The melting temperature, Tm, was determined for the composites via differential scanning calorimetry (DSC). The AC electrical properties (impedance, real part of impedance, imaginary part of impedance, dissipation factor, dielectric constant, real part of electric modulus, imaginary part of electric modulus, electrical conductivity, and relaxation time) were determined. It was found that the applied frequency and filler concentrations affected the AC electrical properties of the composites. The universal power-law of alternating current conductivity wasobserved in the PEO/Al2O3 composites. The calculated power exponent ( n < 1) is physically acceptable within this applied model.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3