Examination of compressive and flexural behaviors of acrylonitrile-butadiene-styrene filled with hemp fiber particles

Author:

Ozenc Osman1ORCID,Dundar Mehmet Akif1ORCID,Sahin Davut Erdem2ORCID

Affiliation:

1. Mechanical Engineering Department, College of Engineering, Yozgat Bozok University, Yozgat, Turkey

2. Mechanical Engineering Department, College of Engineering, Yalova University, Yalova, Turkey

Abstract

Effects of the addition of hemp fiber particles on the compressive and flexural behaviors of an industrially important amorphous thermoplastic, Acrylonitrile-Butadiene-Styrene (ABS), were investigated for the first time in this study. Particles with a size of 67–500 μm were first extracted from 10% NaOH alkaline-treated hemp fibers, and then incorporated into ABS at three various weight ratios (1wt%, 5wt% and 10wt%). Compression and three-point bending tests results revealed that both the compressive and flexural modulus of ABS increase with increasing particle content, but its compressive post-yield and flexural strengths decrease as enhancing particle content. The test results also showed that increasing particle content results in a significant improvement in the compressive modulus of ABS, but a slight enhancement in its flexural modulus. The notch-impact test results revealed that the impact strength of ABS is adversely affected by the incorporation of hemp fiber particles. The FT-IR (Fourier Transform Infrared Spectroscopy) analysis results indicated that mechanical bonding is formed between matrix and natural particles rather than chemical bonding. The SEM (Scanning Electron Microscopy) results put forth that the observed decrease in both the compressive post-yield and flexural strength is mainly due to the lack of strong mechanical bonding between ABS and particles. The three-point bending test data of the materials were satisfactorily reproduced using the linear Drucker-Prager material model in Abaqus engineering software.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3