A novel assessment of dynamic mechanical properties in different articular cartilage layers

Author:

Zhang Xinyue1,Zhang Yu2,Wu Mingjin2,Chen Kai2ORCID,Feng Cunao2,Li Xiaowei2,Zhang Dekun2

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, China

2. School of Materials and Physics, China University of Mining and Technology, China

Abstract

Human articular cartilage, a nonlinear, viscoelastic solid-liquid biphasic tissue, has different mechanical properties and undertakes different functions in different layer. The compression deformation and fatigue damage mechanism of each layer of cartilage is also different when in injury. Compression properties of cartilage can predict cartilage integrity and the likelihood of osteoarthritis. Therefore, the confined and unconfined compression of cartilage is taken to systematically study the dynamic mechanical properties of each layer and reveal the relationship between the dynamic mechanical properties of each cartilage layer and the function of the corresponding cartilage layer. Under confined and unconfined compression conditions, the larger the cyclic loading rate, the greater the deformation rate of each layer. In addition, under the same cyclic loading rate, the superficial layer had the highest deformation rate, followed by the middle layer and the deep layer, which indicates that the deep layer mainly assumes the compression load. Furthermore, under the same loading displacement, the loading stress of cartilage and the deformation rate of each layer in confined compression were greater than those in unconfined compression. Simultaneously, with the increase in the number of loading cycles, the deformation rate in different layers increased first and then stabilized.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Natural Science Foundation of Jiangsu Province

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3