Polypropylene composites reinforced with hybrid inorganic fillers: Morphological, mechanical, and rheological properties

Author:

Mittal Prakhar1,Naresh Shiva2,Luthra Priyanka2,Singh Amardeep2,Dhaliwal Jatinder Singh2,Kapur Gurpreet Singh2

Affiliation:

1. Department of Polymer Science and Chemical Technology, Delhi Technological University, Delhi, India

2. IndianOil Corporation Ltd., Research and Development Division, Faridabad, Haryana, India

Abstract

Mineral fillers like talc and mica are commonly used in the plastic industry because of their tendency to alter the properties of thermoplastic materials. Polypropylene (PP)-talc (PTC), PP-mica (PMC), and PP-talc/mica hybrid composites (PHC) were prepared. Results indicated that filler particle size, type, and content greatly influence the mechanical and rheological properties of the composites. Shear viscosity decreased with the increase in shear rate. At 40°C, an increase of approximately 120% in storage modulus ( E′) was observed in PMC composites. C parameter increased, whereas reinforcing efficiency ( r) decreased with the increase in filler loading. Percent elongation of each type of composites decreased with the increase in filler loading. Tensile modulus of PTC composite increased significantly by 103% (571 MPa) at 20% loading of talc, whereas for PHC and PMC composites, increase of 93% (543 MPa) and 81% (511 MPa) was observed. Flexural modulus also increased considerably by 88% (2413 MPa), 80% (2313 MPa), and 62% (2084 MPa) of PTC, PHC, and PMC composites at 20% filler loading.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3